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Abstract Disease resistance is increasing in importance,
as consumers require high-quality raspberry fruit at a
time when chemical disease control is undesirable.
Breeders have limited resources and rarely include a
primary screen for each fungal disease. Marker-assisted
breeding would facilitate the introduction of resistance
into elite germplasm and breeding lines. An additional
20 simple sequence repeats have been added to the
existing raspberry linkage map. Gene H, which deter-
mines cane pubescence (genotype HH or Hh), the
recessive allele of which gives glabrous canes (genotype
hh), has been mapped on to linkage group 2 and shown
to be closely associated with resistance to cane botrytis
and spur blight but not rust or cane spot. Other map
regions on linkage groups 3, 5 and 6 associated with
disease resistance are reported here.

Introduction

Red raspberry (Rubus idaeus L.) production is an
important high-value horticultural industry in many
cool temperate regions of the world. In Europe, most
raspberry production is concentrated in the northern

and central countries, although there is an increasing
interest in growing cane fruits in southern Europe, e.g.
Greece, Italy, Portugal and Spain. Stems and leaves of
red raspberry and its close relatives are prone to infec-
tion by several fungal diseases, which have the potential
to cause serious yield loss worldwide. Disease resistance
is increasing in importance, as consumers require high-
quality fruit at a time when chemical disease control is
undesirable. Breeders have limited resources and rarely
include a primary screen for each fungal disease. It has
been reported that resistance to some fungal diseases are
associated with distinctive morphological traits, most
notable being cane pubescence (fine hairs). Pubescence is
determined by gene H (genotype HH or Hh), the
recessive allele of which gives glabrous canes (genotype
hh). Gene H is rarely homozygous (HH) because it is
linked with a lethal recessive gene (Jennings 1967).
Raspberry cultivars and selections with fine hairs
(pubescent canes) are reported to be more resistant
to cane botrytis (Botrytis cinerea) and spur blight
[Didymella applanata (Niessl) Sacc.] than non-hairy ones
(Knight and Keep 1958; Jennings 1982a; Jennings and
Brydon 1989) but more susceptible to cane spot (Elsinoe
veneta), powdery mildew (Sphaerotheca macularis) and
yellow rust (Phragmidium rubi-idaei) (Jennings 1962;
Keep 1968, 1976; Jennings and McGregor 1988;
Anthony et al. 1986). How gene H results in the large
increase or decrease in disease resistance has not been
determined. It has been suggested that it is due to link-
age with major resistance genes or minor gene complexes
that independently contribute to the resistance or sus-
ceptibilities of the six diseases affected. An alternative
explanation is that the gene itself is responsible through
pleiotropic effects on each of the resistances (Williamson
and Jennings 1992). The gene is known to have other
pleiotropic effects besides its main effect on cane
pubescence: it is associated with a small increase in spine
frequency and decrease in spine size (Jennings 1962;
Keep et al. 1977). Hairs and spines are both outgrowths
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of epidermal cells and their early development is
inter-related (Peitersen 1921). It would therefore seem
likely that gene H acts early in development and affects
several cell characteristics. Resistance to B. cinerea and
D. applanata is highest in immature tissues and
Williamson and Jennings (1992) have postulated that
the gene increases resistance by delaying cell maturity
and this delay may reduce resistance to P. rubi-idaei and
E. veneta as these fungi only invade immature tissues.
Alternatively cane hairiness itself could affect the ability
of fungi to adhere and infect tissues (Jennings 1962).

Spur blight and cane botrytis occupy the same eco-
logical niche on raspberry canes and often one or the
other predominates. Spur blight infects mature or
senescent leaves on young canes of raspberry, then
grows within the petioles to the nodes where the disease
lesions develop. Buds at infected nodes are retarded in
growth compared to those at non-infected nodes, and
infection usually results in failure of buds to develop into
fertile lateral shoots the following spring (Pepin et al.
1985). Cane botrytis infects in a similar manner though
with bud dwarfing more severe. Lateral shoot loss with
these diseases is the most important factor for yield loss.
It has been shown that a common resistance operates
against these two pathogens (Williamson and Jennings
1986). Whether resistance is caused by a major gene, a
complex of dominant minor genes or a major gene in
combination with minor genes has yet to be determined.
Field screening either with natural infection or with
a simple wound inoculation method (Jennings and
Williamson 1982) remains the best method for analysis
of resistance status, as glasshouse inoculations do not
result in characteristic disease symptoms.

Cane spot, also known as anthracnose, can be ex-
pressed in leaves, fruits and young canes but it is most
easily recognised by the deeply penetrating sunken le-
sions it produces on second-year fruiting canes (flori-
canes) that lead to damaged vascular tissue and yield
loss in susceptible cultivars. The causal agent, E. veneta,
is intractable for use in resistance screening because its
growth rate is exceptionally slow in vitro (Williamson
and Jennings 1992). Natural infection of selections in
field observation plots with a high disease incidence
remains the most effective way of resistance breeding,
though screening of cultivars by use of inoculum
generated in vitro is now possible on a small scale
(Williamson et al. 1989).

Gene H has been reported to be associated with high
susceptibility to cane spot in European cultivars and
originally it was thought that cultivars carrying the gene
would inevitably be susceptible. However, several North
American cultivars are good sources of resistance, de-
spite carrying the gene. Single major gene resistance has
been reported, but Jennings and McGregor (1988) have
questioned this finding.

Yellow rust on raspberry has come to prominence
over the last 20 years with some highly susceptible cul-
tivars including Glen Moy, Glen Ample and Tulameen.
The expansion of raspberry production under plastic

tunnels has exacerbated the disease because of high
humidities generated. Bait plants in commercial planta-
tions in replicated field experiments have been used to
assess genetic resistance. The American cultivar Latham
is known to exhibit complete resistance transmissible
through four generations and determined by gene Yr
(Anthony et al. 1986). These authors also found
incomplete resistance to rust in some of their crosses and
reported that gene H was associated with susceptibility
to rust.

Graham et al. (2004a) developed a genetic linkage
map of raspberry, based on the progeny of a cross
between the cultivars Latham and Glen Moy. This
population segregates for gene H and for resistance to
the above diseases. The overall objective of the research
presented here was to identify map regions associated
with resistance to cane botrytis, spur blight, cane spot
and yellow rust and to explore the relationship between
gene H and resistance to these diseases. The development
of additional polymorphic co-dominant microsatellite
markers and the determination of the map location for
gene H are presented.

Materials and methods

Enhancement of genetic linkage map through
development of further co-dominant markers

Library of nebulised DNA

Generation and screening of a library of nebulised
genomic DNA library for simple sequence repeat (SSR)
identification was carried out as follows: genomic DNA
was extracted from the red raspberry cultivar Glen Moy
using a 2% CTAB method (Graham et al. 2003). Ten
microgram of DNA was re-suspended in 750 ll TE with
glycerol at a final concentration of 10% v/v and nebu-
lised using a disposable plastic nebuliser and a range of
pressures/times from 10 to 30 psi and 60 to 120 s.
Optimal shearing within the desired size range was
generated at 20 psi for 90 s. Size-selected fragments
between 400 bp and 2 kb were ligated into pGEM-T Easy
(Promega) and transformed into Escherichia coliDH10B
cells. Using a DIG nucleic acid detection kit (Roche),
9·384 well plates were screened with Dig-labelled olig-
omers of AG(13) as per manufacturer’s instructions.
Positive colonies were sequenced on an ABI Prism 377
automated sequencer using the BigDye terminator cycle
sequencing reaction ready kit (Applied Biosystems).
DNA sequences were quality scored using the Phred
package (http://www.phrap.com). Primer pairs were
designed using Primer 3 (Rozen and Skaletsky 1998)
synthesised by MWG and tested on the cultivars Glen
Moy and Latham. For SSR polymorphism, PCR reac-
tions were set up in 25 ll reaction with 25 ng DNA,
2 lM each primer, 200 lM of each nucleotide, 1.5 mM
of MgCl2 and 0.5 U Taq DNA polymerase (Roche) per
reaction, in a Gene Amp PCR System 9700 thermal
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cycler (Applied Biosystems) for 25 cycles with denatur-
ation at 94�C for 45 s, annealing at 59�C for 45 s and
extension at 72�C for 1 min, with a final extension step
of 5 min at 72�C. Primer pairs were fluorescently la-
belled on the left primer with HEX, FAM or TET
(MWG) and PCR products were prepared according to
Macaulay et al. (2001) for analysis on the ABI Prism
377. Allele sizes were determined using GENESCAN
software programme (Applied Biosystems) and
GeneScan-350 (Tamra), as an internal size standard.

Further SSR development from PstI library

Further SSRs from the PstI genomic library previously
described (Graham et al. 2002, 2004a) were tested for
utility. Previously 100 of the 258 SSRs were examined.
Here a further 26 SSR loci were examined.

Mapping population and phenotypic analyses

The mapping population previously described (Graham
et al. 2004a) consists of a full-sib family of 320 progeny
generated from a cross between the European red
raspberry cv. Glen Moy and the North American red
raspberry cv. Latham. This population was planted in
autumn 2001 at two different environmental locations in
randomised complete block trials with three replicates of
two plant plots at both locations (12 plants per geno-
type). The sites varied in altitude and slope. Latham has
glabrous canes (hh) and is resistant to rust and cane
spot. Glen Moy on the other hand has pubescent canes
(Hh) and is resistant to cane botrytis and spur blight.
Plants were designated Hh (pubescent) or hh (glabrous)
by visual inspection of cane morphology.

Disease screening

Four diseases Cane botrytis (B. cinerea), spur blight (D.
applanata), cane spot (E. veneta) and yellow rust (P.
rubi-idaei) were scored for all experimental plots in both
trials on each plant. Detailed descriptions and images of
the disease symptoms can be found in the Compendium
of Raspberry and Blackberry Diseases and Insects (Ellis
et al. 1991).

Disease symptom scoring All four diseases were scored
for presence or absence. For cane botrytis and spur
blight a continuous severity score was made based on
the degree of disease spread in the canes (Williamson
and Hargreaves 1981).

Cane botrytis Disease was scored three times (BS1,
BS2, BS3) during mid-summer (July–August) in each
of two seasons and later in winter (BA1, November–
January). Disease was scored if pale brown lesions
were present in summer and grey/whitish lesions,

watermarking and sclerotia were present in winter.
When cane blight was present in winter, the extent of
disease spread in the canes in the winter scoring was
also given a severity score from 1 to 4 where 4 was
given for canes showing widespread lesions from top
to bottom over the whole cane, 3 being half of the
cane showing lesions, 2 being a few lesions and 1 being
a small isolated lesion.

Spur blight Here again three scorings were carried out
in two seasons, a summer scoring where chestnut brown
lesions were scored on the primocanes below a node and
around the axillary bud (DS1, DS2, DS3), and in winter
silvered floricane lesions covered with black pseudothe-
cia were recorded (DA1). Again a severity score of 1–4
was recorded for the disease spread in winter based on
the number and extent of lesion spread over the canes.

Spur blight/cane botrytis disease complex Symptom
expression for both cane botrytis and spur blight varied
greatly with cane phenotype and in this segregating
population, wide variation in cane phenotype has been
observed. In order to avoid mis-scoring one plant as
resistant to one disease but susceptible to the other, an
overall disease score was recorded based on the presence
of symptoms of either or both diseases. This approach is
probably more valid than assessing each disease indi-
vidually because a common resistance mechanism is
known to operate against both pathogens that occupy
the same ecological niche (Williamson and Jennings
1986). These are recorded as MS1-3 and MA1-3 summer
and winter scorings, respectively.

Cane spot Scorings of disease symptom expression was
carried out four times in autumn. For cane spot, ellip-
tical cavities and deep sunken lesions that developed on
the fruiting cane were recorded.

Rust The presence of rust was monitored on four dates
beginning in May when yellow pustules (aecia) were first
visible on the adaxial leaf surface through to August,
when yellow uredinia were present on the abaxial leaf
surface.

Statistical analysis

Genetic linkage map construction

JoinMap V2.0 (Stam and Van Ooijen 1995) was used to
construct the linkage map. Segregation data from 453
markers (93 SSRs, 9 EST-SSRs and 351 AFLPs) (259
previously published) which were polymorphic in the
Glen Moy · Latham parents were analysed. Linkage
groups were separated at a LOD score of 7.0. Map
distances were calculated using the Kosambi mapping
function.
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Analysis of phenotypic data

Cluster analysis of the disease measurements was used to
explore the lines for major groupings of resistant and
susceptible individuals. This was based on a cityblock
measure of similarity between pairs, suitable for both 0–
1 presence/absence data and 0–4 disease severity data
(Gower 1985).

Each trait was then analysed for possible QTLs on the
marker map. Most methods for QTL interval mapping
assume that the phenotypes can be modelled as a mixture
of normal distributions. However, such an analysis is not
appropriate for diseases scored as presence/absence. The
disease data were therefore analysed using a generalised
linear model with binomial errors and a logit link func-
tion (McCullagh and Nelder 1989). For each date, the
number of replicates showing infection was analysed, as a
proportion of the replicates assessed. For rust and cane
spot, an overall measure of disease was also formed as
the number of infected replicates, summed over all the
dates. While this overall measure violates the binomial
assumption of independence, in that lines assessed as
diseased on one date should be assessed as diseased on
subsequent dates, it is informative about the total burden
of disease for each line.

As the linkage map was quite dense, little information
was lost by fitting the generalised linear model to each
marker in turn and assessing which markers were most
significant. However, care must be taken to use a suit-
able threshold for significance. One approach is to
control the familywise type I error rate (FWER), the
probability of erroneously rejecting the null hypothesis
of no significant effect for any of the markers assessed
(Lander and Kruglyak 1995). However, as the number
of markers increases, the threshold for significance be-
comes more and more stringent and the power of the test
to detect true effects is reduced. An alternative approach
is to control the false discovery rate (FDR) (Benjamini
and Hochberg 1995), which is defined as the expected
proportion of true null hypotheses that are rejected.
Simonsen and McIntyre (2004) carried out a simulation
study to assess the power of various statistics for
detecting multiple QTL and their ability to control the
FDR.

Here two methods from Simonsen and McIntyre
(2004) were used. The first, denoted H, is the original
method of Benjamini and Hochberg (1995), and is
implemented as follows. Let P(i), i=1,...,m, be the
ordered significances of the generalised linear model
relating a phenotypic trait to the marker i. If k is the
largest value of i such that

PðiÞ �
ia
m
;

then the k values P(1),...,P(k) are declared significant.
This controls the FDR at a level £ a. Here, a value
a=0.05 is used. This test is quite stringent, partly
because if one marker is associated with a trait, then
linked markers will also show associations.

The second approach is to Eliminate Linked Markers
(ELM). In this case any marker linked to a marker al-
ready found to be significant is excluded from consid-
eration. The ELM/G approach combines this with a
geometric a spending function, where the ith ordered test
is tested with probability ai=a/2i. This controls the
FWER £ a. This approach was found to be less
stringent than method H, but to give higher power for
detecting QTLs (Simonsen and McIntyre 2004).

Typically this approach indicated one or two chro-
mosomes where markers were linked to the trait. A
generalised linear model was fitted for both markers and
their interaction to test if this was significant. The same
model was also fitted to 100 bootstrap replicate samples
(Efron and Tibshirani 1993) to test whether the markers
were consistently significant.

Results

SSR development

Seventy-five clones from the nebulised library hybridised
to the AG oligomer and were sequenced. Primer pairs
were designed to the flanking sequences of 16 of the
repeat regions using Primer 3 and tested for polymorphism
on the Glen Moy and Latham parents (Supplementary
Data Table 1). Those showing polymorphism were used
on the progeny for mapping, five of which were placed on
the linkage map.

Pst genomic library

Of the 26 new primer pairs tested, 20 were heterozygous
and suitable for mapping and 11 of these were confi-
dently placed on the linkage map. The remaining six was
homozygous or monomorphic (Supplementary Data
Table 2).

A number of additional markers from Graham et al.
(2004a) have now been placed on to the genetic linkage
map through the addition of other newly developed
markers. These were: Rub259f, LEAF102, FRUITE4
and FRUITG7.

Linkage map

The updated Rubus map (Fig. 1) has 349 markers and a
total length of 669 cM. A further 55 markers are known
to belong to the Latham map of linkage group 3, but are
not shown here because of the difficulty of obtaining a
reliable order with such densely spaced markers. Six
linkage groups from the two parents can be paired by
co-dominant and dominant bridging markers (segre-
gating as aa:ab:bb, aa:b- or ac:ad:bc:bd). One group that
was isolated on the previous map remained isolated at a
LOD of seven, but joined another group at a LOD of
six. However, there are still two groups, one from each
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parent, that cannot be associated with each other or with
any of the other groups, even at a much lower LOD
score, and therefore there are eight linkage groups in
total.

The gene controlling cane pubescence, gene H, was
mapped to the Glen Moy parent on linkage group 2 at
approximately 48 cM.

Disease scores

High disease incidence was recorded at both field sites
for cane botrytis and spur blight whereas rust and cane
spot were only identified at one site. Symptom expres-
sion for cane botrytis and spur blight varied among the
progeny, thus the overall score for the disease complex is
probably more accurate, as is the presence or absence
score, rather than the assessment of disease severity

which can be masked by cane morphology. A severity
score was also attempted by Daubeny (1987); however,
based on results over 2 years the low scores 1 and 2 were
classed as resistant and scores of 3 and 4 as susceptible,
low scores being inconsistent. Daubeny (1987) suggested
from these data that two gene pairs were required for
resistance, with the presence of at least two dominant
genes necessary.

Cane spot symptoms were recorded as a presence
and absence score, as only minor differences in the
extent of disease symptoms on infected canes were
observed. For rust, again a presence or absence score
was given, as no evidence for any difference in disease
severity on any of the progeny could be detected.
However, the presence of rust on the Glen Moy parent
was much more severe than that on any of the prog-
eny where minor rust symptoms showing little varia-
tion across the progeny were seen.
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Fig. 1 Genetic linkage map of red raspberry showing the overall map and the maps for Latham (P1) and Glen Moy (P2). 1-LOD support
intervals for the traits are shown by bars
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Analysis of trait data

Cluster analysis of the offspring based on all the dis-
ease trait data (using average linkage cluster analysis
and a cityblock measure of similarity) showed that the
offspring fell into two separate groups (Fig. 2). A chi-
squared test of independence was used to investigate
which of the disease measurements was associated with
this separation: this showed that there were no sig-
nificant differences between the two groups of the
offspring regarding presence of cane spot or rust, but
that there were highly significant differences for all the
measurements of cane botrytis and spur blight apart
from the final summer scoring of overall disease, MS3.
The cluster analysis was repeated using the data on
cane botrytis and spur blight only. The 48 individuals
in the upper cluster tend to show botrytis and/or spur
blight in most of the disease assessments, while the 46

individuals in the lower cluster are less likely to show
the disease.

Relationship between trait and marker data

Cane spot

A generalised linear model analysis of the pres-
ence/absence of cane spot identified two locations of the
genome as containing possible QTLs affecting cane spot,
close to 95 cM on linkage group 2 (alleles from Latham)
and close to 21 cM on linkage group 4 (alleles from Glen
Moy). The results are summarised in Table 1. The more
stringent criterion, H, identified markers from linkage
group 2 for date 2 and overall cane spot, and bootstrap
analysis confirmed the significance of these. Markers on
linkage group 2 were identified for the other dates, but
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only using the less stringent ELM/G criterion. Markers
from linkage group 4 were also identified using the
ELM/G criterion: bootstrap analysis confirmed the sig-
nificance of marker E41M39-166 on linkage group 4 for
date 1. A further location at 44 cM on linkage group 3 is
also indicated for date 4, but only by the less stringent
ELM/G criterion. When the most significant markers
from linkage groups 2 and 4 were analysed together,
both were significant but there was no significant inter-
action between them. Table 2 shows the probabilities of
cane spot given the genotype at the most significant
markers, based on the overall data.

Rust

A generalised linear model for the presence/absence of
rust indicated associations with markers from Latham
on linkage groups 3 and 5, as summarised in Table 3.
The most significant markers were on linkage group 3,

but the location of the most significant marker varied
with the date on the measurement, from 29 to 58 cM.
There was also an indication of an association with
markers from Latham, linkage group 5. This was sig-
nificant by the Benjamini–Hochberg criterion H for
date 2 and for the overall analysis, and significant by
the less stringent ELM/G for date 3. When the most
significant markers from both linkage groups 3 and 5
were fitted together, there was a significant interaction
(P=0.026). However, only the marker from linkage
group 3 was consistently significant following boot-
strap analysis. The predicted probabilities of develop-
ing rust are shown in Table 4. There is a low
probability of developing rust for lines carrying geno-
type aa at marker E41M31-147, regardless of the
genotype at P13M39-147. However, for lines with
genotype ab at marker E41M31-147 there is a signifi-
cantly higher probability of developing the disease if
the line also has genotype ab at marker P13M39-147.
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Overall botrytis/spur blight

The cluster analysis gave an overall division of the
offspring into resistant/susceptible to botrytis and/or
spur blight. Chi-squared tests of independence were
used to test for associations between this grouping
from cluster analysis and the molecular markers. Most

of the markers on linkage group 2 from Glen Moy
were identified by the H criterion as showing highly
significant associations with the grouping, but the most
significant association was with the ‘hairy’ gene, gene
H (v1

2=51.2, P<0.001). Of the 48 individuals in the
upper cluster, which were mainly susceptible, 42 had
the non-hairy homozygous genotype hh, while 39 out
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of 45 individuals in the lower cluster (which showed
more resistance) had the hairy heterozygous Hh
genotype. (The gene H status for one individual could
not be determined.)

Individual measurements of botrytis and spur blight

As above, generalised linear models were used to relate
the presence/absence of botrytis and spur blight to the

Fig. 2 Cluster analysis of the disease data demonstrating an overall division of the offspring into resistant/susceptible to botrytis and/or
spur blight. The 48 individuals in the upper cluster tend to show botrytis and/or spur blight in most of the disease assessments, while the 46
individuals in the lower cluster are less likely to show the disease
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marker data, for each measurement in turn. Table 5
shows the significance of gene H and those markers that
were significant by the H criterion, the ELM/G criterion
and by bootstrapping. Apart from spring scoring MS3,
all measurements of cane botrytis and spur blight
showed highly significant associations with gene H, with
low disease scores for the Hh genotypes and higher
disease for the hh genotypes. Gene H is clearly a major
gene affecting resistance to both diseases: in order to test
for further genes, the presence of disease was modelled
for each other marker i in turn as a function of the
genotype at gene H, the genotype at marker i and an
interaction between the two genotypes.

Unlike gene H, most of the selected markers were
from Latham and from linkage groups 3, 5 and 6. There

were no markers clearly associated with cane botrytis
only or spur blight only, but we note that the markers
from linkage group 5 were significant only for mea-
surements made in autumn and not for any of the
measurements made in spring. The markers from link-
age groups 3 and 5 had additive effects, while the
markers selected from linkage group 6 for spring disease
scores MS1 and MS2 interacted with gene H, as shown
in Table 6. For MS1 measurement, the lines with
genotype aa at LEAF102 showed a much great differ-
ence between gene H genotypes in the probability of
showing disease than the lines with genotype ab at
LEAF102. The MS2 measurements showed a similar
pattern, but the most significant association was with
LEAF97 in this case (Table 6).

Spines

In view of the changes to the map, the spines data pre-
sented in Graham et al. (2004a) were re-analysed. None
of the offspring showed the spine-free phenotype of Glen
Moy, but the degree of spininess varied and was scored
on a 1–5 scale. A linear model was used to relate the
average spine score across the six replicates to the
marker data. The most significant marker was gene H
(P<0.001), explaining 36.0% of the trait variance. As

Table 1 Significant associations of markers with cane spot measurements

Trait H ELM/G Bootstrap

Marker LG Marker LG

Date 1 – – E41M39-166 4, M, 21 E41M39-166
P13M95-298 2, L, 85

Date 2 E40M55-98 2, L, 95 – – E40M55-98
Date 3 – – E41M42-122 2, L, 93

E41M39-166 4, M, 21
Date 4 – – E41M42-122 2, L, 93

E41M31-147 3, L, 44
Overall E41M42-122 2, L, 93 P13M60-147 4, M, 23 E41M42-122

H shows the most significant marker association by the Benjamini–Hochberg criterion H, using an FDR of 0.05. ELM/G shows any
further markers added by the ELM/G criterion. Bootstrap indicates which of these markers are significant in 95% of bootstrap resamples.
For the linkage groups: L Latham, M Glen Moy. The position is shown in centiMorgan

Table 2 Probability of overall cane spot presence, given the marker
genotypes at E41M42-122 on LG2 and P13M60-147 on LG4

LG4: P13M60-147

aa ab
Probability Probability

LG2: E41M42-122 aa 0.45 (0.071) 0.25 (0.054)
ab 0.74 (0.054) 0.54 (0.066)

Standard errors are shown in brackets

Table 3 Significant associations of markers with rust measurements

Trait H ELM/G Bootstrap

Marker LG Marker LG

Date 1 – – – – –
Date 2 E41M41-221 3, L, 29 – – E41M41-221

P13M39-147 5, L, 50 – – –
Date 3 E41M60-135 3, L, 58 E40M50-450 5, L, 19 E41M60-135
Date 4 E41M31-147 3, L, 44 – – E41M31-147
Overall E41M31-147 3, L, 44 – – E41M31-147

P13M39-147 5, L, 50 E40M50-550 1, M, 110 –

H shows the most significant marker association by the Benjamini–Hochberg criterion H, using an FDR of 0.05. ELM/G shows any
further markers added by the ELM/G criterion. Bootstrap indicates which of these markers are significant in 95% of bootstrap resamples.
For the linkage groups: L Latham, M Glen Moy. The position is shown in centiMorgan
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for botrytis and spur blight, every other marker was
tested for a significant effect in addition to the effect of
gene H and a significant interaction with gene H. The
results are shown in the last line of Table 5. Two further
markers were identified, both from Latham. One,
E41M60-135, was from linkage group 3, in an area also
associated with resistance to botrytis and spur blight and
close to an area associated with rust. The other,
P12M58-282, was on linkage group 2, in a location close
to that of gene H. However, further markers bridging
the parental maps would be necessary to tell if there is a
single locus on linkage group 2, with alleles from both
parents affecting the degree of spininess, or two loci.
There was some evidence for an interaction between
gene H and P12M58-282 (P=0.03) but this interaction
was not consistently present in bootstrap samples.
Table 7 shows the predicted degree of spininess using the
main effects of gene H, P12M58-282 and E41M60-135.

Discussion

Fruit breeders have limited resources and rarely include
a primary screen for fungal diseases in their selection
process (Jennings, personal communication). The
development of a saturated robust genetic linkage map is
a major step in moving towards a marker-assisted

breeding programme. The existing map has been revised
through the addition of further 20 SSR markers, 5 from
the nebulised library, 11 from the PstI library and these
markers brought in an additional four markers that
could not previously be placed. Six groups from the
parents can now be paired; the seventh group still re-
mains to be completed. Map locations associated with
resistance have been identified for all four diseases
investigated.

The map location for gene H has been determined on
linkage group 2 and associations with resistance to the
cane botrytis and spur blight complex confirmed. In
contrast to cane botrytis and spur blight, no significant
associations between gene H and rust or cane spot were
determined. Most markers on linkage group 2 from cv.
Glen Moy, the resistant parent, showed high associa-
tions with botrytis and spur blight, but the most signif-
icant association was with gene H itself. For individual
disease scores gene H was again highly significant.

A factor from Latham was identified on linkage
group 3 which is associated with resistance to rust as
well as resistance to spur blight, botrytis and increased
number of spines. For rust the most significant markers
were from Latham, the resistant parent, and situated on
linkage group 3 with marker E41M31-147 at 44 cM
having the most significant association. Anthony et al.
(1986) have studied the inheritance of complete and
incomplete resistances to rust in a half diallel cross
including Boyne, which derives complete resistance from
Latham. They found that crosses of Boyne to susceptible
varieties all segregated for complete resistance and
proposed that Boyne was heterozygous for a single
resistance gene, designated Yr, which was derived from
Latham. As the Latham · Glen Moy population also
segregates for resistance to rust, we propose that
Latham is also heterozygous for Yr, and that this lies on
linkage group 3 close to E41M31-147. Anthony et al.
(1986) also found variation in the degree of susceptibility
among offspring of Boyne without complete resistance

Table 4 Overall probability of developing rust, given the marker
genotypes at E41M31-147 on LG3 and P13M39-147 on LG5

LG5: P13M39-147

aa ab Combined
Probability Probability Probability

LG3: E41M31-147 aa 0.09 (0.028) 0.05 (0.029) 0.07 (0.021)
ab 0.26 (0.056) 0.50 (0.048) 0.39 (0.038)

Standard errors are shown in brackets

Table 5 Analysis of the measurements of the presence of botrytis and spur blight

Trait Disease Season Gene H dev ratio Other markers

MA1 Mixed Autumn 200.9*** P12M61-111, LG3, 3:1, 65B, RUB59b, LG2, M, 31
MA2 Mixed Autumn 24.1*** P12M61-330, LG5, L, 27B

MA3 Mixed Autumn 17.2*** P12M61-137, LG5, L, 26B

MS1 Mixed Spring 89.6*** LEAF102, LG6, L, 21BI

MS2 Mixed Spring 43.0*** LEAF97, LG6, L, 27BI, P13M55-299, LG6, M, 9I

MS3 Mixed Spring 4.3* –
BS1, DS1 Mixed Spring 10.9*** –
BS2 Botrytis Spring 53.0*** P14M61-238, LG6, L, 9
BS3 Botrytis Spring 49.9*** E41M60-135, LG3, L, 58HB

BA1 Botrytis Autumn 19.0*** E41M41-129, LG5, L, 5B

DS2 Spur blight Spring 24.8*** –
DS3 Spur blight Spring 18.0*** P13M95-115, LG3, L, 40B, P13M61-250, LG1, L, 23
DA1 Spur blight Autumn 54.2*** P14M39-383, LG6, L, 19B

Spines 52.7*** E41M60-135, LG3, L, 58HB, P12M58-282, LG2, L, 59HB

Apart from gene H, the markers shown were generally selected by the ELM/G criterion. H indicates that the marker was also selected by
the H criterion; B indicates that the marker was consistently significant in bootstrap resamples; I indicates that there was a significant
interaction with gene H
*P<0.05, ***P<0.001

829



and concluded Boyne to also be a source of incomplete
resistance. In the Latham · Glen Moy cross, there is
some evidence, although not highly significant, for a
gene on linkage group 5, also from Latham, affecting the
susceptibility of the offspring that do not carry the
‘resistant’ allele on linkage group 3 and this needs to be
investigated further in the whole population as a possi-
ble source of incomplete resistance. This area on LG5 is
also implicated in spur blight/botrytis resistance. There
was no evidence, however, of gene H being related to
incomplete resistance in this cross. None of the offspring
were as susceptible to rust as the Glen Moy parent. One
explanation of this is that there is another resistance
gene, for which Latham is homozygous RR and Glen
Moy is rr. In this case all offspring would be Rr and so
more resistant than Glen Moy, but this gene would not
segregate in this particular cross and cannot be mapped.
It may be that the presence of this R gene overcomes any
effect of gene H. We aim to investigate this by inter-
crossing the offspring to see if a further resistance gene
can be mapped.

Gene H and a marker from LG3 associated with
resistance to rust were also associated with spines. Glen
Moy is spine-free, with genotype ss at the gene S for
spininess, but all offspring have spines to some extent
suggesting that Latham is SS. If Latham was Ss then
offspring would segregate as in Glen Prosen by Glen
Clova cross in Anthony et al. 1986. Therefore gene S
cannot be mapped in our population. We can, however,
map variation in the number of spines and this associ-
ation with Gene H agrees with that found by other
researchers (Jennings 1988). Hairs and spines are both
outgrowths of epidermal cells and their early develop-
ment is inter-related, hence such an association is not
unexpected (Peitersen 1921). It does seem likely there-

fore that the gene itself is having some effect on resis-
tance to Didymella and Botrytis and also spine number
by its action early in development affecting several cell
characteristics. Jennings (1982b) found that water run-
off was more rapid on hairy canes than non-hairy ones
and had suggested that bud infection therefore occurred
less often on canes with hairs. However, by direct
inoculation of cane tissues the effects on disease symp-
tom expression could be demonstrated up to a year after
infection. For cane spot again, no association with gene
H could be detected; however, markers on linkage group
2 from Latham were shown to be highly significant.
Markers from the Glen Moy parent on linkage group 4
were also identified. Jennings and McGregor (1988)
scored the degree of cane spot in 15 segregating families
using a 0–5 scale, which equated to a range of 093 spots
per cane. Resistance to rust was highly correlated with
resistance to cane spot in five of these families. However,
none of these families had the complete resistance to rust
derived from Latham. There is no evidence of any
relationship between resistance to rust and resistance to
cane spot in our data.

We now intend to saturate the map region sur-
rounding gene H with RAPD and AFLP markers by
creating bulks of additional progeny with the Hh and hh
genotypes. Any markers identified as being close to gene
H will be used to screen clones from a large insert library
constructed from Glen Moy (Graham et al. 2004b)
allowing us to clone gene H. Additionally further
progeny will be screened for the diseases to examine
regions of interest in more detail.
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